Large Sample Covariance Matrices without Independence Structures in Columns

نویسندگان

  • Zhidong Bai
  • Wang Zhou
  • WANG ZHOU
چکیده

The limiting spectral distribution of large sample covariance matrices is derived under dependence conditions. As applications, we obtain the limiting spectral distributions of Spearman’s rank correlation matrices, sample correlation matrices, sample covariance matrices from finite populations, and sample covariance matrices from causal AR(1) models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Large Dimensional Sample Means , Sample Covariance Matrices and Hotelling ’ S T 2 Statistics

In this paper, we prove the central limit theorem for Hotelling’s T 2 statistics when the dimension of the random vectors is proportional to the sample size via investigating asymptotic independence and random quadratic forms involving sample means and sample covariance matrices.

متن کامل

On limiting spectral distribution of large sample covariance matrices by VARMA(p,q)

We studied the limiting spectral distribution of large-dimensional sample covariance matrices of a stationary and invertible VARMA(p,q) model. Relationship of the power spectral density and limiting spectral distribution of large population dimensional covariance matrices of ARMA(p,q) is established. The equation about Stieltjes transform of large-dimensional sample covariance matrices is also ...

متن کامل

Analysis of Covariance Structures Under Elliptical Distributions

This article examines the adjustment of normal theory methods for the analysis of covariance structures to make them applicable under the class of elliptical distributions. It is shown that if the model satisfies a mild scale invariance condition and the data have an elliptical distribution, the asymptotic covariance matrix of sample covariances has a structure that results in the retention of ...

متن کامل

Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures

Driven by a wide range of contemporary applications, statistical inference for covariance structures has been an active area of current research in high-dimensional statistics. This paper provides a selective survey of some recent developments in hypothesis testing for high-dimensional covariance structures, including global testing for the overall pattern of the covariance structures and simul...

متن کامل

Factored sparse inverse covariance matrices

Most HMM-based speech recognition systems use Gaussian mixtures as observation probability density functions. An important goal in all such systems is to improve parsimony. One method is to adjust the type of covariance matrices used. In this work, factored sparse inverse covariance matrices are introduced. Based on U DU factorization, the inverse covariance matrix can be represented using line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008